
PoS Tagging· June 2, 2009

Text Annotation

Beáta B. Megyesi

beata.megyesi@lingfil.uu.se

1

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Goal

• What are the main components used for grammatical

annotation?

• How do we get running texts morho-syntactically

annotated?

• What methods are used by computational linguists for

grammatical tagging?

• How can we measure the correctness of the annotation?

2

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Components of grammatical annotation

• Running text

• Morphological segmentation, lemmatisation (start-ed,

start)

• Part-of-speech tagging: to annotate tokens with their

correct PoS (start/V)

• Chunking: to find non-overlapping group of words (NP:

a nice journey PP: to NP: Vinstra)

• Syntactic parsing: to recover the complete syntactic

structure

3

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Overview

• Preparing text for grammatical annotation

• Methods for part-of-speech tagging

• Tagger evaluation

• Summary

• About the assignment

4

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

• Grammatical annotations are usually added to words and

also to punctuation marks (period, comma)

• Tokenisation (1)

– segmenting running text into words/tokens and

– separating punctuation marks from words

– white space marks token boundary, but not sufficient

even for English:

– ”Book that flight!”, he said.

– Treat punctuation as word boundary:

– ” Book that flight ! ” , he said .

5

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

• Tokenisation (2)

– Punctuation often occurs word internally

– Examples: Ph.D., google.com, abbreviations (e.g.),
numeral expressions: dates (06/02/09), numbers
(25.6, 100,110.10 or 100.110,10)

– Clitic contractions marked by apostroph: we’re - we
are

– Apostroph also as genitive case marker: book’s

– Multiword expressions (White house, New York, etc)
cen be also handled by a tokenizer by using a
multiword expression dictionary - Named Entity

6

Recognition (NER)

7

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

• Grammatical annotation is usually carried out on the

sentence level

• Sentence/utterance segmentation (1)

– segmenting a text into sentences is based on

punctuation

– certain kinds of punctuation (period, question mark,

exclamation point) tend to mark sentence boundary

– relatively unambiguous markers: ?, !

8

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

• Sentence/utterance segmentation (2)

– Problematic: period as ambiguous between sentence

boundary marker and a marker of abbreviations (Mr.)

or both (This sentence ends with etc.).

– Disambiguating end-of-sentence punctuation (period,

question mark) from part-of-word punctuation (e.g.,

etc.)

– Sentence segmentation and tokenization tend to be

addressed jointly

9

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

• Sentence tokenization methods

– build a binary classifier that decides if a period is part

of the word, or is a sentence boundary marker

– State-of-the-art methods are based on machine

learning but many people use regular expressions

– Grefenstette (1999) Perl word tokenization algorithm:

1. separate unambiguous punctuation: ?, (,)

2. segment commas unless they are inside numbers

3. disambiguate apostrophs and pull off word-final

clitics

4. periods are handled by abbreviation dictionary

10

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Preparing text for annotation

They
neither
liked
nor
disliked
the
Old
Man
.

The
...

11

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Methods for annotation

• Manual:

– time consuming, expensive

– lack of consistency

• Automatic:

– fast

– consistent errors

– methods: rule-based, data-driven or combinations

12

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Rule-based

• a set of rules

• requires expert knowledge

• 60s-90s

• tokenization, morphological segmentation, tagging,

parsing

13

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Data-driven methods

• automatically build a model

• require data

• easy to apply to new domains

• fast, effective and robust

• can combine systems: consensus, majority

14

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Machine learning

• automatic learning of structure given some data

• data-driven/corpus-based methods

• given some example learn the structure

• supervised vs unsupervised learning

• symbiotic relation between corpus development and

data-driven classifier

• many different types of ML algorithms

15

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Data-driven methods within NLP

• Transformation-based error-driven learning (Brill 1992)

• Memory-based learning (Daelemans, 1996)

• Information-theoretic approaches:

– Maximum entropy modeling (Ratnaparkhi, etc)

– Hidden Markov Models (Charniak, Brants, etc)

• Decision trees (Quinlan, Daelemans)

• Inductive Logic Programming (Cussens)

• Support Vector Machines (Vapnik, Joachims, etc.)

16

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Machine learning in NLP

• Applications:

– PoS tagging

– chunking

– parsing

– semantic analysis (word sense disambiguation)

• Languages: 90s - Western European languages

• Today: Arabic, Chinese, Hungarian, Japanese, Turkish,

...

17

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Part-of-Speech (PoS) tagging

• Goal: to assign each word a unique part-of-speech

• CONtent/N or conTENT/A (e.g. TTS, SR, parsing,

WSD)

• PoS: noun, verb, pronoun, preposition, adverb,

conjunction, participle, article, ...

• Tagset: a tag represents PoS with or without

morphological information

– 87 tags in Brown corpus (Francis, 1979)

– 45 tags in Penn Treebank (Marcus et al., 1993)

18

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Part-of-speech tagging

• Example:

• The/DT grand/JJ jury/NN commented/VBD on/IN a/DT

number/NN of/IN other/JJ topics/NNS ./.

• Input: string of words and a specified tagset

• Output: single best tag for each word

19

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Tagging in NLP

• tagging is a standard problem

• taggers exist for many languages

• same principles for other applications, e.g.

– chunking

– partial parsing (“shallow parsing”)

– named entity recognition

20

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Part-of-speech tagging, cont.

• Trivial

– non-ambiguous words

• Non-trivial:

– resolve ambiguous words (more than one possible

PoS)

∗ Book/VB that/DT flight/NN ./.

∗ book NN VB

∗ that DT CS

– unknown words not present in the training data

21

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Types of tagger

• Rule-based

– Earliest taggers (Harris, 1962; Klein and Simmons,
1963; Green and Rubin, 1971)

– Two-stage architecture:

1. Use a dictionary to assign each word a list of
potential PoS

2. Use large lists of hand-written disambiguation
rules to assign a single PoS for each word

– The dictionaries and the set of rules get larger

– Ambiguitities often left unsolved in case of
uncertainty

22

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• Constraint Grammar approach (Karlsson et al, 1995)

• Example: EngCG tagger (Voutilainen, 1995, 1999)

– Run each word through (the 2-level) lexicon

(transducer)

– Return the entries for all possible PoS of the word

– Morphological heuristics for words not in lexicon

– Apply a set of constraints (3,744 in EngCG-2) to the

input sentence to rule out incorrect PoS

23

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• Constraints: example

(@w =0

VFIN (-1 TO))

Remove the tag VFIN if the preceding word is ”to”

24

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• EngCG rule development

– hand-written rules compiled to finite-state automata

– a linguist changes a set of rules iteratively to

minimize tagging errors

– at each iteration the rules are applied, errors are

detected and rules are changed

25

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Example: Output

• I started work

• Annotated text:

• "<*i>" "i" <*> <NonMod> PRON PERS NOM SG1

SUBJ @SUBJ

• "<started>" "start" <SV> <SVO> <P/on> V

PAST VFIN @+FMAINV

• "<work>" "work" N NOM SG @OBJ

26

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• EngCG grammar for morphological disambiguation:

– 1100 grammar-based constraints for disambiguation

of multiple PoS and other inflectional tags

– accuracy: 99.7-100 %

– leaves 3-6 % morphological ambiguity

– 200 heuristic constraints to resolve 50 % of

remaining ambiguities

27

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• EngCG syntax:

– for syntactic functions and disambiguation

– 300 mapping rules: attach all possible syntactic
alternatives to the morphologically disambiguated
output

– 250 syntactic constraints for syntactic ambiguity
resolution

– 75-85% of all words become syntactically
unambiguous and

– 95.5-98% of all words retain the appropriate
syntactic-function tag

28

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• Some other grammars

– PALAVRAS parser for Portuguese (Bick 2000) with
generalized dependency markers and semantic
prototype tags

– DanGram

– The Oslo-Bergen Tagger (Bokmål and nynorsk)

– And grammars for Sami, Swedish (SWECG), French,
German, Catalan, Estonian, Spanish, Esperanto etc.

– Used for corpus annotation, grammar checking (e.g.
Norwegian) and machine translation systems (e.g.
Danish-English)

29

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Constraint Grammar

• New CG development:

– CG2 (Tapanainen 1996) and VISL CG2

– VISL CG3 with new possibilities such as dependency

grammar

– An overwiev: http://visl.sdu.dk/constraint

grammar.html

30

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Data-driven tagging

• Goal: each word recieves a unique PoS (no ambiguities

left)

• Usual steps in tagging:

– Input: text/transcribed speech

– Lexikon lookup: tagging with “default” tags

– Disambiguation of ambiguous words

– Output: Each word is annotated with one PoS tag

31

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Data-driven taggers

• requires data set (supervised training)

• learning: algorithm to find the best explanation for the

observation in a corpus

• classification problem (discret classes)

32

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 To decide

• algorithm/learning method to use

• represent the class (tagset)

• attributes to use (linguistic analysis)

• data size

– training set

– validation set

– test set

• evaluation method

33

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based learning (TBL)

• Eric Brill 1992, 1995

• also called Brill tagger

• one of the first popular data-driven taggers

• based on rules (or transformations) which determine

when ambiguous words should have a given tag

• ML component: grammar rules are automatically

induced from a tagged training corpus

• system learns by detecting errors

34

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based tagging

• Principle:

lexicon lookup: choose the most frequent tag for each

word according to the lexicon, otherwise use

heuristics

disambiguation: change the initial tagging by looking

at the context (tags and words)

trigger: lexical and contextual features

transformations: rewrite rules that change a tag given

a certain context

35

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based tagging (forts)

• 2 types of rules:

– Lexical: to annotate unknown words

– Contextual: to improve the tagging of the lexical

module

• Rule form:

– Lexical: if condition, tag the word with tag T

∗ Condition: word contains character X, has

prefix/suffix of max. 4 characters, if prefix/suffix is

removed/added we get a known word, bigrams

36

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based tagging, rules

• Contextual: if conditon, change tag T1 to T2
– Condition: the word, tags or words in the context

scheme ti−3 ti−2 ti−1 ti ti+1 ti+2 ti+3

1 *

2 *

3 *

4 *

5 *

6 *

7 *

8 *

9 *

37

Table 10.7, M&S, s. 363

38

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based tagging (cont)

• transformations:

original tag resulting tag trigger

NN VB preceeding tag is T0go to school

VBP VB one of the preceeding 3 tags is MDcut

JJR RBR next tag is JJmore valuable player

Table 10.8, M&S, s. 363

39

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based tagging (cont.)

• How do we get the rules?

– from an annotated corpus

→ supervised machine learning

1. define triggers

2. train on a training data set

40

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based learning

1. initialize the model: each word in a corpus receives the most

frequent tag

2. instantiate all possible transformations and choose theone that

reduces the error rate the most

3. use the choosen transformation and apply it to the corpus,and

continue with 2 as far as you get approval

4. stop learning and save the rules in the same order as they have

been learned

41

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based learning

• learning results: transformations instead of probabilities

(categorial/symbolic method)

• rules are ordered

• rules can be read and modified

• learning is slow

42

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based learning

• Advantages

– rich pattern system (lexical and contextual triggers)

– new patterns can be added

– comprehensible rules

– rules can be changed

• Disadvantages

– slow

– ordered set of rules

43

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Transformation-based learning

• Different implementations:

– fnTBL (Grace Ngai and Florian Radu, 2000)

∗ fast version, used for chunking, word-sense

disambiguation, etc.

– µTBL (Lager, 2000)

∗ implementation in prolog for PoS tagging,

chunking, dialog act tagging, word sense

disambiguation

44

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Stochastic taggers

• Resolve ambiguities by using a training corpus to

compute the probability of a given word having a given

tag in a given context

• Hidden Markov Model or HMM tagger

– HMM tagging is a task of choosing a tag-sequence

with the maximum probability

– Tagging is treated as a sequence classification task:

∗ What is the best sequence of tags which

corresponds to a particular sequence of words?

45

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How an HMM tagger works?

• We consider all possible sequences of tags and choose

the tag sequence which is most probable given the

observation sequence ofn words

• HMM tagging algorithm chooses as the most likely

sequence of tags the one that maximizes the product of

two terms:

– the probability of each tag generating a word

– the probability of the sequence of tags

argmax
tn
1

n

∏
i=1

P(wi |ti)P(ti |ti−1)

46

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How an HMM tagger works?

• Compute tag frequencies for each tag

• Calculate the word likelihood probabilities,

P(wordi |tagi), represent the probability, given that we

see a given tag associated with a given word, i.e., we

compute lexical frequencies by PoS-category for each

word

• Calculate the tag sequence probabilitiesP(ti |ti−1)

(bigram frequencies)

• Calculate products of lexical likelihood and tag sequence

probabilities and decide the PoS tag.

47

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Computing the most probable tag
sequence

• Secretariat/NNS is/VBZ expected/VBN to/TO race/VB

tomorrrow/NR

• Example: race / VB or NN?

• NNS VBZ VBN TO VB NR

• NNS VBZ VBN TO NN NR

• Ambiguity resolves globally (not locally) picking the

best tag sequence for the whole sentence

48

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Computing the most probable tag
sequence

• How likely are we to expect a verb/noun given the

previous tag?

P(ti |ti−1) =
C(ti−1, ti)
C(ti−1)

• We can derive the maximum likelihood estimate of a tag

transition probability from corpus counts:

• P(NN|TO) = C(TO,NN)
C(TO) = .00047

• P(VB|TO) = C(TO,VB)
C(TO) = .83

49

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Computing the most probable tag
sequence

• What is the likelyhood that the word race has VB and

NN tag?

P(wi |ti)

• We can derive the probabilites (lexical likelihoods) from

corpus counts.

• P(race|NN) = .00057 (How likely that the noun israce?)

• P(race|VB) = .00012 (How likely that the verb israce?)

50

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Computing the most probable tag
sequence

• What is the tag sequence probability for the following

tag (tomorrow/NR)?

P(ti |ti−1) =
C(ti−1, ti)
C(ti−1)

• We can derive the probabilites from corpus counts.

• P(NR|VB) = C(VB,NR)
C(VB) = .0027

• P(NR|NN) = C(NN,NR)
C(NN) = .0012

51

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Computing the most probable tag
sequence

• Putting together the results:

argmax
tn
1

n

∏
i=1

P(wi |ti)P(ti |ti−1)

• P(VB|TO)P(NR|VB)P(race|VB) = .83*.00012*.0027 =
.00000027

• P(NN|TO)P(NR|NN)P(race|NN)

=.00047*.0012*.00057 = .00000000032

• The prob of the sequence with the VB tag is higher and
race is tagged as VB although it is less likely forrace.

52

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How an HMM tagger works?

• HMM is a weighted finite-state automaton in which state

transitions (arcs) have probabilities indicating how likely

that path is, and whose output is also probabilistic.

• one state of each PoS, output is the words of the sentence

• HMM has 2 types of probs: the observationlikelihoods

(emission probs) of the word string andprior transition

probalities of the tag sequence

argmax
tn
1

n

∏
i=1

︷ ︸︸ ︷

P(wi |ti)
︷ ︸︸ ︷

P(ti |ti−1)

53

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How an HMM tagger works?

• Viterbi algorithm: takes as input an HMM and a set of

observed words and returns the most probable tag

sequence.

• Probability matrix with one column for each observation

t and one raw for each state graphs.

54

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How a trigram HMM tagger works?

• Most modern HMM taggers, like Trigrams’n Tags

(Brants, 2000) use more context, i.e., letting the

probability of the tag depend on the two previous tags:

P(tn
1)≈

n

∏
i=1

P(wi |ti)P(ti |ti−1, ti−2)

• Sententence boundaries are marked so the tagger know

the location of the end of the sentence by a special

sentence boundary tag added to the tagset. Therefore,

sentence boundaries must be marked in your data by an

empty line!

55

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How a trigram HMM tagger works?

• Problem: Data sparsity

• A particular sequence of tagsti−2, ti−1, ti in the test set

may not exist in the training set.

• We cannot compute the following:

P(ti |ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

• but we can estimateP(ti |ti−1, ti−2)!

56

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How a trigram HMM tagger works?

• Estimate the prob by combining weaker estimators.

• The maximum likelihood estimation of each prob can be

computed from corpus counts:

TrigramsP̂(ti |ti−1, ti−2) =
C(ti−2, ti−1, ti)
C(ti−2, ti−1)

BigramsP̂(ti |ti−1) =
C(ti−1, ti)
C(ti−1)

UnigramsP̂(ti) =
C(ti)

N

57

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How a trigram HMM tagger works?

• The estimators for trigrams, bigrams, and unigrams are

combined.

• The maximum likelihood estimation of each prob can be

computed from corpus counts:

P(ti |ti−1, ti−2) = λ3P̂(ti |ti−1, ti−2)+λ2P̂(ti |ti−1)+λ1P̂(ti)

whereλ1 +λ2 +λ3 = 1, i.e.,P is a probability

distribution.

• λ is set by using deleted interpolation (Jelinek and

Mercer, 1980).

58

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 How a trigram HMM tagger works?

• Deleted interpolation:

– We successively delete each trigram from the training

corpus and chooseλs so to maximize the likelihood

of the rest of the corpus, i.e., to generalize to unseen

data and not overfit the training corpus.

• TnT accuracy: 96.7% on Penn Treebank with a trigram

tagger.

• Open source reimplementation of TnT is HunPoS

(Halacsy et al, 2006)

59

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Class representation

• tagset size: depending of the corpus and language type

• tagset size for English: 50-100 tags

• for agglutinative and highly inflectional languages, the

tagset size is much larger as they are sequences of

morphological tags rather than a single tag

• comparisons in the morphologically tagged
MULTEXT-East corpora

60

Language Tagset size

English 139

Czech 970

Estonian 476

Hungarian 401

Romanian 486

Slovene 1033

(Hajic, 2000)

61

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Attributes
Info MB ME TBL TnT

word + + + +

suffix 3 4 4 10

prefix - 4 4 -

versal + + + +

number + + - -

word before 1 2 3 -

word after 1 2 3 -

tag before 2 2 3 2

tag after 1 - 3 -

62

PoS Tagging· June 2, 2009

Evaluation

Beáta B. Megyesi

beata.megyesi@lingfil.uu.se

63

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Evaluating Taggers

• Evaluation proceeds by comparing tagger output against

gold-standard answers

• Measures: Accuracy, Precision, Recall and F-measure

(from IR)

• Accuracy: the percentage of all tags in the test set where

the tagger and the gold standard agree

64

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Evaluating Taggers

• Precision: the percentage of tags/chunks that are

provided by the system that are correct

Precision=
#o f correctlytagged tokenswithPoStagX

Total#o f tagged tokenswithPoStagX
(1)

• Recall: the percentage of tags are actually present in the

input that were correctly identified by the system

Recall=
#o f correctlytagged tokenswithPoStagX

Total#o f tokenswithPoStagX inre f erence
(2)

65

• F-measure: harmonic mean, a way of combining P and R

F =
(β 2 +1) ∗ Precision∗ Recall

β 2 ∗ Precision+Recall
(3)

66

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Evaluation: example

Our: Nora/N saw/N a/D good/Adv movie/N on/P TV/N./F

Gold: Nora/N saw/V a/D good/A movie/N on/P TV/N ./F

Accuracy = 6/8 = 0.75

N: Precision = 3/4 = 0.75, Recall = 3/3 = 1.0

D: Precision = 1/1 = 1.0, Recall = 1/1 = 1.0

Adv: Precision = 0/1 = 0, Recall = 0/0 = –

P: Precision = 1/1 = 1.0, Recall = 1/1 = 1.0

F: Precision = 1/1 = 1.0, Recall = 1/1 = 1.0

A: Precision = 0/0 = –, Recall = 0/1 = 0

67

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Evaluation: Method

• Decide the baseline (at least most frequent class

baseline), that a system should have as a bottom line

• Always separate training, development, and test set!

• Use development set while you are improving the

system, and test it on the test set in the end!

• Use n-fold cross validation where appropriate!

• Use statistical tests to determine if the difference

between two models is significant! Paired test: paired

t-test, McNemar test (see Cohen, 1995; Dietterich, 1998)

68

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Important

• size of data (the more the better)

• tagset size

• the type of training and test set

• use n-fold cross validation in case of small data size

69

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Results for various taggers for Swedish

Table 1: The tagging accuracy for all the words, and the ac-

curacy of known and unknown words for each PoS tagger.

Training and test set are disjoint, consisting of 100k tokens,

respectively. Tagset includes 139 tags.

ACCURACY MB ME TBL TNT

Total (%) 89.28 91.20 89.06 93.55

Known (%) 92.85 93.34 94.35 95.50

Unknown (%) 68.65 78.85 58.52 82.29

70

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 The most common errors

Correct Wrong tag

adjective (AQPNSNIS) adverb (RGPS)

particle (QS) preposition (SPS)

noun plural (NCNPNIS) noun singular (NCNSNIS)

adjective singular (A...S...) adjective plural (A...P...)

adverb (RG0S) particle (QS)

71

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Corpus-based NLP

• ”Every time I fire a linguist the performance of the

recognizer goes up” (F. Jelinek, IBM Research Group,

80-tal)

• data-driven methods preferred

• problem with rule-based approaches

– language constructions are accepted or not

– no preferences among ambiguous analysis

72

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Drawbacks with data-driven methods

• need a large corpus (collected and analyzed)

• disambiguated material cost to produce (partly manual

work)

• corpus representativity is not always prior

• language models are hard to understand in linguistic

research

• models are hard to modify after learning

• require knowledge in mathematics and computer science

73

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Advantages with data-driven methods

• automatic learning

• algorithms are available and implemented

• more and more data available

• bootstrapping: technique that iteratively trains and

evaluates a classifier in order to improve its performance

• computers handle large amounts of data

• statistical models are robust

74

B
E

Á
T

A
B

.
M

E
G

Y
E

S
I·

P
O

S
TA

G
G

IN
G
·

JU
N

E
2

,
2

0
0

9 Assignment

• Train several models using TnT (Brants, 2000) and

evaluate the result.

– experiment with various parameters (ignoring case,

using bigrams and unigrams, suffix analysis)

– improving models by adding more training data and

using bootstrapping

– construct a model using a large training corpus

75

